Inverse spectral problem for Dirac operators by spectral data
نویسندگان
چکیده
منابع مشابه
Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملThe inverse spectral problem
1 Introduction The inverse spectral problem on a Riemannian manifold (M, g), possibly with boundary, is to determine as much as possible of the geometry of (M, g) from the spectrum of its Laplacian ∆ g (with some given boundary conditions). The special inverse problem of Kac is to determine a Euclidean domain Ω ⊂ R n up to isometry from the spectrum Spec B (Ω) of its Laplacian ∆ B with Dirichle...
متن کاملSymplectic inverse spectral theory for pseudodifferential operators
We prove, under some generic assumptions, that the semiclassical spectrum modulo O(~) of a one dimensional pseudodifferential operator completely determines the symplectic geometry of the underlying classical system. In particular, the spectrum determines the hamiltonian dynamics of the principal symbol.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2017
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1704065a